Suzuki DF350A

For price information please contact us!

It’s no secret that there is a growing demand for more powerful outboard motors.

These outboards have, in turn, fueled a move to newer, larger boat designs that previously may have been powered by stern drive or inboard power.

So, as more powerful outboards are introduced, the boats get bigger and as the boats get bigger, outboards are getting more muscular. Suzuki embarked on a major engineering expedition to build the Ultimate outboard motor.

Making more horsepower is no mystery. Increasing displacement, or the use of a turbocharger or supercharger, makes more horsepower. However, larger displacement engines typically burn more fuel, adding weight creates a wide range of problems for boats, and more complex mechanical components create reliability concerns.

On top of all this, boat speed is ultimately limited by hull design, the hydrodynamics of the lower unit and propellers, and how the outboards are mounted.

In developing the DF350A, we started with a blank sheet of paper, and considered all these factors in our design and engineering.

First, we looked at the traditional single propeller design. A single propeller creates forward thrust, to be sure, but also produces a significant amount of rotational energy as a byproduct. Was there a way we could convert this wasted energy into productive power and improve propeller efficiency?

Secondly, the leading edge of the gear case disrupts the flow of water over the propeller. More power and torque require stronger, larger gears to transfer power from the driveshaft to the propeller shaft.

This typically results in a larger gear case – and consequently, more disruption of the flow of water to the propeller. Could we design a lower unit that could house stronger gears and yet minimize the disruption of the flow of water to the propellers?

Suzuki engineers labored mightily through years of computer simulations, trial and error, and on-water testing, to significantly improve the way an outboard converts engine power into underwater thrust.

They have succeeded in this quest – and the result is a revolution in innovation.

Our solution to developing 80 horsepower per liter in a V6 350 horsepower engine was to increase the compression ratio to 12.0:1, the highest compression ratio ever for a production outboard engine. In order to make this work without knocking (a typical problem at this ratio), we developed systems to mix cooler air with well-atomized fuel to provide optimal conditions for complete, and controlled combustion.



ATΧ: Extra long shaft, electrical starter, remote control & Trim, ATXΧ: Extra extra long shaft, electrical starter, remote control & Trim

For shipping please contact us!

PHO. +30 2238031825 E-MAIL info@bpmarine.gr


Quick Find
Use keywords to find the product you are looking for.
Advanced Search
Prop Selector
Best Deals
0 items
Manufacturer Info
Suzuki Marine
Other products
Social Networking
Share Product
Share via E-Mail
Share on Facebook Share on Twitter
Ellinika (Greek) English Deutsch (German) Espanol
We Accept
Spare parts
bpmarine footer